$12^{1}_{142}$ - Minimal pinning sets
Pinning sets for 12^1_142
Minimal pinning semi-lattice
(y-axis: cardinality)
Pinning semi lattice for 12^1_142
Pinning data
Pinning number of this loop: 5
Total number of pinning sets: 244
of which optimal: 1
of which minimal: 7
The mean region-degree (mean-degree) of a pinning set is
on average over all pinning sets: 3.0456
on average over minimal pinning sets: 2.58435
on average over optimal pinning sets: 2.4
Refined data for the minimal pinning sets
Pin label
Pin color
Regions
Cardinality
Degree sequence
Mean-degree
A (optimal)
•
{1, 2, 4, 6, 8}
5
[2, 2, 2, 3, 3]
2.40
a (minimal)
•
{1, 2, 4, 6, 7, 10}
6
[2, 2, 2, 3, 3, 4]
2.67
b (minimal)
•
{1, 2, 4, 5, 6, 10}
6
[2, 2, 2, 3, 3, 3]
2.50
c (minimal)
•
{1, 4, 5, 6, 10, 11}
6
[2, 2, 2, 3, 3, 3]
2.50
d (minimal)
•
{1, 4, 5, 6, 8, 11}
6
[2, 2, 2, 3, 3, 3]
2.50
e (minimal)
•
{1, 3, 4, 6, 8, 11}
6
[2, 2, 2, 3, 3, 4]
2.67
f (minimal)
•
{1, 3, 4, 6, 7, 10, 11}
7
[2, 2, 2, 3, 3, 4, 4]
2.86
Data for pinning sets in each cardinal
Cardinality
Optimal pinning sets
Minimal suboptimal pinning sets
Nonminimal pinning sets
Averaged mean-degree
5
1
0
0
2.4
6
0
5
7
2.62
7
0
1
43
2.85
8
0
0
75
3.02
9
0
0
68
3.15
10
0
0
34
3.24
11
0
0
9
3.29
12
0
0
1
3.33
Total
1
6
237
Other information about this loop
Properties
Region degree sequence: [2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6]
Minimal region degree: 2
Is multisimple: No
Combinatorial encoding data
Plantri embedding: [[1,2,3,4],[0,4,2,2],[0,1,1,5],[0,5,6,6],[0,7,8,1],[2,9,6,3],[3,5,7,3],[4,6,9,8],[4,7,9,9],[5,8,8,7]]
PD code (use to draw this loop with SnapPy): [[20,17,1,18],[18,10,19,9],[19,8,20,9],[5,16,6,17],[1,11,2,10],[4,7,5,8],[15,6,16,7],[11,15,12,14],[2,14,3,13],[3,12,4,13]]
Permutation representation (action on half-edges):
Vertex permutation $\sigma=$ (13,4,-14,-5)(2,5,-3,-6)(17,6,-18,-7)(7,16,-8,-17)(8,19,-9,-20)(1,10,-2,-11)(11,20,-12,-1)(12,9,-13,-10)(3,14,-4,-15)(18,15,-19,-16)
Edge permutation $\epsilon=$ (-1,1)(-2,2)(-3,3)(-4,4)(-5,5)(-6,6)(-7,7)(-8,8)(-9,9)(-10,10)(-11,11)(-12,12)(-13,13)(-14,14)(-15,15)(-16,16)(-17,17)(-18,18)(-19,19)(-20,20)
Face permutation $\varphi=(\sigma\epsilon)^{-1}=$ (-1,-11)(-2,-6,17,-8,-20,11)(-3,-15,18,6)(-4,13,9,19,15)(-5,2,10,-13)(-7,-17)(-9,12,20)(-10,1,-12)(-14,3,5)(-16,7,-18)(-19,8,16)(4,14)
Loop annotated with half-edges
12^1_142 annotated with half-edges